**Analyzers** ============= SimpleMC contains the following analyzers: .. list-table:: Analyzers :widths: 15 20 25 40 :header-rows: 1 * - Analyzer key - Type - Description - Tasks * - mcmc - Bayesian inference - Metropolis-Hastings algorithm - Parameter estimation * - nested - Bayesian inference - Nested sampling algorithms from Dynesty library [arXiv:1904.02180] - Parameter estimation and model comparison * - emcee - Bayesian inference - EMCEE algorithm [arXiv:1202.3665] - Parameter estimation * - MaxLikeAnalyzer - Optimization - L-BFGS-B algorithm https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html - Likelihood maximization * - ga_deap - Optimization - Collection of genetic algorithms from DEAP library Fortin, F. A., et al (2012). DEAP: Evolutionary algorithms made easy. The Journal of Machine Learning Research, 13(1), 2171-2175. - Likelihood maximization We recommend for a previous quickly test, to use an optimizer before an Bayesian inference algorithm. Sampler comparison ------------------- .. note:: To verify the consistency of the parameter estimation among the different samplers available, we have made the following graph. .. figure:: /img/samplersTriangle.png We estimates the posteriors of the parameters of the owaCDM model (dark energy with timedependent equation-of-state in a model of unknown curvature) using Supernovae type Ia, Cosmic Chronometers (Hubble Distance) and BAO .